

Summary

With so many tools serving the continuous delivery market, what job each tools does may be unclear. This

whitepaper explores the roles of ARA, IT Automation, and Continuous Integration for building out a stronger

and fatter continuous delivery pipeline.

IT Automation engines such as Ansible, Chef and Puppet are designed to automate cloud provisioning,

manage network devices, manage server configurations, and deliver RPMs for application deployments. In

addition, Jenkins for Continuous Integration (CI) is often used for building and releasing software applications.

So the question one should ask is “Why do I also need Application Release Automation if I already have both

an IT engine and a CI server for handling application deployments?” This whitepaper answers that specific

question and explores how a better Continuous Delivery solution can be gained by integrating CI, IT

Automation and ARA.

Contents

Primary difference between IT Engines and ARA 2

Benefits of ARA over RPMs 2

Using the Best of Breed 3

Continuous Integration Workflows, ARA and IT Automation 4

Agentless Delivery 5

Release Engineer and Ansible Galaxy Roles 6

Release Engineer and Puppet or Chef 7

Release Engineer Architecture 8

Release Engineer Benefits 9

Conclusion 10

Solving the Continuous Delivery Puzzle

A whitepaper review of how to leverage ARA, IT Automation (Ansible, Chef,

Puppet) Jenkins and Cloudbees for an stronger Continuous Delivery

foundation.

By Tracy Ragan, COO, OpenMake Software

 By Tracy Ragan, COO, OpenMake Software

file://///ROCKET/hotwheelsbig/shared/docs/whitepapers/Whitepapers%202016/PuttingTogetherthePieces-Ansible%20to%20CD.docx%23_Toc454960951
file://///ROCKET/hotwheelsbig/shared/docs/whitepapers/Whitepapers%202016/PuttingTogetherthePieces-Ansible%20to%20CD.docx%23_Toc454960952
file://///ROCKET/hotwheelsbig/shared/docs/whitepapers/Whitepapers%202016/PuttingTogetherthePieces-Ansible%20to%20CD.docx%23_Toc454960953
file://///ROCKET/hotwheelsbig/shared/docs/whitepapers/Whitepapers%202016/PuttingTogetherthePieces-Ansible%20to%20CD.docx%23_Toc454960954
file://///ROCKET/hotwheelsbig/shared/docs/whitepapers/Whitepapers%202016/PuttingTogetherthePieces-Ansible%20to%20CD.docx%23_Toc454960955
file://///ROCKET/hotwheelsbig/shared/docs/whitepapers/Whitepapers%202016/PuttingTogetherthePieces-Ansible%20to%20CD.docx%23_Toc454960956
file://///ROCKET/hotwheelsbig/shared/docs/whitepapers/Whitepapers%202016/PuttingTogetherthePieces-Ansible%20to%20CD.docx%23_Toc454960957

Page | 2 www.openmakesoftware.com

Primary difference between IT Engines and ARA
IT Automation engines are designed to automate the management of servers, containers, network

devices, and cloud based datacenters. They control configuration details and deploy RPMs (Redhat

Package Management files). Developers who use IT Engines for application deployment most

commonly do so by first creating an RPM for their application and then passing that RPM to the IT

Engine. RPMs were designed for performing Linux installations; however over the years RPMs are

now more universally accepted. The problem however is an RPM is OS dependent. An RPM written

for Linux must be updated for other operating systems such as AIX. In addition, RPMs must be

scripted for each application, hiding critical information about the Application Stack packaging and

component relationships with configuration details and deployment logic. RPMs were designed as a

delivery mechanism, not an end-all solution to application release management.

Organizations looking at Application Release Automation (ARA) solutions are seeking a more flexible

and transparent way to manage the packaging and deployment of the Application Stack without

relying on the use of RPMs. ARA solutions provide an easy interface for package creation with the

ability to track component versions to application versions along with the deploy logic at the

component level. And unlike using an RPM, the packaging and associated logic can be installed to

any Operating System across the continuous delivery pipeline. In essence ARA automates and

controls what would otherwise be scripted and hidden in a RPM and then extends the automation and

control to the final delivery step, tracking components to endpoints (physical, virtual, cloud,

containers), supporting roll forward and rollback, database updates and historical reporting.

Both It Automation and ARA have their place in the delivery process and work better integrated as a

complete solution. Using ARA for infrastructure management is doable, just as using IT Automation

for application deployments is doable. You can always use a kitchen knife in place of a screwdriver

when you are in a pinch. But when faced with assembling a shelving unit, most people invest in a

screwdriver, or better yet a screw gun. The point being - choose the right tools for the job.

Benefits of ARA over RPMs
When it comes to packaged software (Oracle, WebSphere, Tomcat, etc.) most

developers would prefer to use the RPM from the vendor and use an IT Engine to

perform the deployment. The job of installing the new software is done without

much effort. It follows the old KISS rule (Keep It Simple Stupid).

If moving the software from point A to B is all that is needed, our problem would be

solved. However, there are other functions such as reporting and tracking the

update, database management, incremental rollback, jumping versions, calendaring

and inventory reporting that is required by larger, more complex organizations.

These functions are critical to automating Continuous Delivery. So while using an IT

Automation engine to deploy an RPM might work for development, it lacks the

sophistication for a fully automated and traceable Continuous Delivery pipeline. This

is where ARA steps in.

http://www.openmakesoftware.com/

Page | 3 www.openmakesoftware.com

Using the Best of Breed
Using the right tools for the job requires integrating ARA with IT Automation,

Continuous Integration and Continuous Delivery. This allows an overall DevOps

approach that uses RPMs for vendor updates, an IT engine for managing the

infrastructure configuration, and ARA to coordinate the Application Stack, all

managed as a combined package across the Continuous Delivery Pipeline driven by

Continuous Integration.

Combining Ansible and Release Engineer Packages

To simplify this coordination, OpenMake Software’s Release Engineer and Ansible

are integrated to create a combined package. The process can be initiated by

Continuous Integration calling Release Engineer to create the combined package,

working with Ansible for a completely integrated solution from development through

production release.

Ansible is leveraged to manage RPMs, environment updates, cloud provisioning and

other IT Automation tasks. Release Engineer pulls together the Application stack,

database updates and the infrastructure layer as a complete combined package,

delivers the combined package, tracks the Component Versions, audits the process,

tracks endpoints to Component Versions, supports rolling forward/rollback, version

jumping, calendaring, security and delivers historical reports. The process can be

initiated by a Continuous Integration trigger and pushed up the Continuous Delivery

lifecycle for non-stop software deployments.

“OpenMake

Software’s

Release Engineer

and Ansible are

integrated to

create a combined

package.”

http://www.openmakesoftware.com/

Page | 4 www.openmakesoftware.com

 Continuous Integration Workflows, ARA and IT Automation
So the next question often is “We use Jenkins, so why should we use Release

Engineer or Ansible?” The real question is “Who drives the process and who does

what job?” Jenkins does not do Application Release Automation or IT Infrastructure

Management. Jenkins is an orchestration solution that sits on top of many

processes, providing centralized initiation and reporting. It does not have specific

features to support application packaging or IT Automation.

A Jenkins Workflow calls out to an external process that in turn performs the

different functions from build, package, deploy and test. It is often the case that a

single Jenkins server supports a single state in the lifecycle for a single team.

CloudBees Operations Center sits on top of multiple Jenkins Servers to standardize

and manage larger Jenkins installations. Jenkins calls out to Release Engineer

which then creates the combined package with Ansible Components, versions the

deployment, performs rollback/roll forward, tracks the component to the endpoint,

and reports the results back to Jenkins.

“Jenkins calls

out to Release

Engineer which

then creates the

combined

package with

Ansible

Components,

versions the

deployment,

performs

rollback/roll

forward, tracks

the component

to the endpoint

and reports the

results back to

Jenkins.”

http://www.openmakesoftware.com/

Page | 5 www.openmakesoftware.com

Agentless Delivery
Release Engineer and Ansible are agentless solutions that dramatically simplify

implementation of both IT Automation and ARA. These agentless solutions also

greatly reduce long-term maintenance costs, bottlenecks and overhead. By

allowing Release Engineer and Ansible to take over the deployment of the

combined deployment package without the need for agents, you eliminate

hundreds of Jenkins Executors (Slaves) installed on every endpoint.

Eliminating the Jenkins Executors does not take away the benefits of using

Jenkins or CloudBees. It instead supports a simpler and faster way of moving a

Jenkins Workflow across the Continuous Delivery pipeline without needing to

install the Jenkins Executors to all endpoints for performing the delivery. The

Jenkins Master orchestrates the Continuous Integration for each application team

at each state in the Life Cycle. Where needed, a Jenkins Executor may be

installed for testing functions, but the problem of a Jenkins Executor on every

runtime endpoint is eliminated. CloudBees is then used to monitor, standardize

and control the Jenkins Masters.

Agentless solutions represent the ‘next generation’ in ARA and IT Automation for

many reasons. First, an agentless solution eliminates the costs associated with

managing agent licenses and the time required to maintain the agents

themselves. Second, in the datacenter of today, spinning up virtual machines,

and managing containers with microservices represents a more elastic topology

versus the static topologies of only a few years ago. With today’s more elastic

topologies, installing unused agents on each end-point isn’t efficient in terms of

management time and licensing cost.

Like Ansible, Release Engineer uses secure protocols such as FTP(S),

SFTP/SSH and Win/SMB to support its agentless delivery. Release Engineer

can deploy too many different server platforms including: Windows, UNIX, Linux,

iSeries, OpenVMS, Tandem, Stratus, IBM4690, Tru64.

“Eliminating the

Jenkins Executors

does not take away

the benefits of

using Jenkins or

CloudBees. It

instead supports a

simpler and faster

way of moving a

Jenkins Workflow

across the

Continuous

Delivery pipeline

without needing to

install the Jenkins

Executors to all

endpoints for

performing the

delivery.”

http://www.openmakesoftware.com/

Page | 6 www.openmakesoftware.com

Release Engineer and Ansible Galaxy Roles
Release Engineer includes integration to the Ansible Galaxy Roles. On start-up,

Release Engineer loads all available Ansible Galaxy Roles into the Release

Engineer database from the Ansible community site. These Galaxy Roles are

defined to Release Engineer as Components with Actions. Components are

assigned to an Application and are versioned. With the Galaxy Roles

immediately available, it is very easy to add the installation or update of Tomcat,

WebSphere or Oracle using the Ansible Galaxy Role. No extra work required. It

is all done for you. The new Ansible Component is defined to your Application

with all of the required.

“On start-up, Release

Engineer loads all

available Ansible Galaxy

Roles into the Release

Engineer database from

the Ansible community

site.”

http://www.openmakesoftware.com/

Page | 7 www.openmakesoftware.com

Release Engineer and Puppet or Chef
Release Engineer also supports both Chef and Puppet to assist with creating

the ‘Combined Package.’ Chef and Puppet can easily be called as part of the

Component Item Workflow to perform these infrastructure layer steps. Once a

Chef or Puppet Component is defined to Release Engineer, Release Engineer

passes control to Chef or Puppet to perform the work. This means that you

could define your Application to include a Chef Component to install or update

Tomcat prior to the deployment of an EAR file. Release Engineer will Version

the Chef Component, call on Chef to perform the delivery of the Component,

track the Chef Component to the Server and send the logs back to the Jenkins

CI server that initiated the work.

“Once a Chef or Puppet

Component is defined to

Release Engineer,

Release Engineer

passes control to Chef or

Puppet to perform the

work.”

http://www.openmakesoftware.com/

Page | 8 www.openmakesoftware.com

Release Engineer Architecture

Release Engineer’s architecture is based on a web based UI with a Linux Engine that includes a

relational databases backend (PostgreSQL or Oracle). A Windows Engine is also available. You can

configure Release Engineer with multiple Deploy Engines for segregating Environments if needed. This is

useful for large organizations with thousands of endpoints. Release Engineer can connect to multiple

repository types for retrieving binaries, such as Git, SVN, Maven, file system, FTP, etc. In addition you

can connect to any type of data source to pull out parameters or other details stored externally. There is

a full set of APIs and a Jenkins Plug-in which allows Jenkins to initiate a Release Engineer deployment as

part of a Continuous Integration Workflow.

In addition to the above, Release Engineer provides History, Inventory and Trend reports, and tracks all

version updates to Components, Workflow Logic and Parameters. Release Engineer can meet the

toughest of Audit requirements. It provides a complete audit trail of how the application was packaged

and deployed and can link back to Meister to show what source code was used in a particular binary that

went to production.

Architecture Diagram #1

http://www.openmakesoftware.com/

Page | 9 www.openmakesoftware.com

 Architecture Diagram #2

Release Engineer Benefits

Release Engineer was designed to give the enterprise a strategic release automation solution that will:

 Support the ability to model the organizations structure based on Domain and Sub-domains for

self-service administration and sharing of objects.

 Support agentless deployments to multiple platforms delivering a single solution from Java to

.Net, Unix to Tandem, and everything in between.

 Provide a high level of sharing and collaboration between project teams and operational teams.

 Bridge datacenter needs with the integration of Ansible Galaxy Roles;

 Support the ability to jump back or forward to any software release at any state in the lifecycle,

including the necessary database updates.

 Centralize the management of deployment pipelines using an integrated calendar and approval

gates.

 Define release packages using a graphical drag and drop interface that is easy for everyone to

understand.

 Integrate with open source tools to leverage community knowledge and plug-ins.

 Off-load overworked CI Servers and improve the scalability of CI.

 Support releases to servers, clouds and containers.

 Achieve higher levels of deployment maturity leading to continuous process improvement and

less risky software releases.

 Audit the server inventory with component, application and release versions.

Release Engineer creates a release automation process that is easy to understand, allowing both the

development teams and centralized release teams to share feedback and improve the process, quickly

leading to less risky software releases and faster innovation cycles.

http://www.openmakesoftware.com/

Page | 10 www.openmakesoftware.com

Conclusion
Building a stronger and fatter Continuous Delivery pipeline needs the agility and intelligence of

automation tooling. Because there are many choices in which type of tooling to adopt, it is important to

understand what tool performs what job. ARA is used for managing the application stack. IT automation

is used for managing datacenter configuration and the deployment of RPMs. Continuous Integration such

as Jenkins serves as a high level workflow orchestration tool for each development team and stage.

CloudBees helps standardize and manage multiple Jenkins Servers across large organization for better

Continuous Delivery management. No one tool can support all of these features independently. A

combined solution that leverages best of breed tools to automate all of the Continuous Delivery pipeline

will ultimately deliver the speed, control and transparency required for supporting fast and flexible

software turnovers.

Release Engineer has close integration with Ansible Galaxy Roles, supports Chef and Puppet as

Components, builds a ‘combined’ package of both application and infrastructure components, and reports

to Jenkins through a Plug-in. Its agentless design allows for organizations to take advantage of the

benefits of Jenkins, without the need for hundreds of Jenkins Executors (Slaves) running in test and

production environments.

Release Engineer is free to small teams and can be downloaded at no cost from

https://www.openmakesoftware.com/release-engineer-free-downloads/

http://www.openmakesoftware.com/
https://www.openmakesoftware.com/release-engineer-free-downloads/

Page | 11 www.openmakesoftware.com

About OpenMake Software
OpenMake® Software delivers highly reusable DevOps Solutions that automate the Continuous Delivery

pipeline from build automation through release management. As a 100% self-funded organization, we have

the freedom to focus on our customer’s needs, delivering innovation in software builds and release. We

automate and accelerate the heavy lifting of the build, package and deploy tasks of the Continuous Delivery

process by focusing on the creation, control and audit of the application stack to achieve faster software

innovation cycles. Our record proves that we are here for the long haul and not a ‘quick turnaround’ venture

capital commodity. An investment in our continuous delivery automation solutions or Professional Services

forms a ‘technical partnership’ that provides you expertise and support to solve your toughest DevOps

problems for today and tomorrow.

Tracy Ragan – COO and Co-Founder, OpenMake Software

Ms. Ragan has had extensive experience in the development and implementation of business applications. It

was during her consulting experiences that Ms. Ragan recognized the lack of build and release management

procedures for the distributed platform that had long been considered standard on the mainframe and UNIX.

In the four years leading to the creation of OpenMake Software she worked with development teams in

implementing a team-centric standardized build to release process. She can be reached at

Tracy.Ragan@OpenMakesSoftware.com.

http://www.openmakesoftware.com/
mailto:Tracy.Ragan@OpenMakesSoftware.com

