The opportunity for a local circular economy for plastic

Report on the findings from the joint feasibility study to determine the technical, economic, and environmental benefits of a local advanced recycling industry

National Plastics Summit signals changes for plastic recycling

At the National Plastics Summit in March 2020, Prime Minister Scott Morrison put the challenge to industry to take responsibility for its plastic waste. Alongside this, the Prime Minister oreshadowed budget announcements to encourage demand for ecycled plastic products, and to expand our industry capability to produce them.

56

We are working with state and territory
governments to identify and unlock the critica upgrades that will lead to a step-change in their cycling capacil... Investing in the sector inn't jut bur economy as well. 1

The Hon. Scott Morrison, Prime Minister

The National Plastics Summit in 2020 was the catalyst for this industry collaboration and resulting report. We undertook this feasibility study to demonstrate that a circular economy for plastic is not only possible, but also essential for Australia to meet its National Waste Policy commitments.

Scot Morisoon PM. SDeech. National Plastics Summit- Australian
Pariliment House, ACT (2020). The State of Victoria - Department of Environment, Land, Water and

Recycling Victoric Anew economy

Victoria's new circular economy policy
Recycling Victoria: a new economy is Victoria's circular economy policy and 10 -year action plan to deliver a cleaner, greener Victoria with less waste and pollution, better recycling, more ,oss and a stronger economy. ${ }^{2}$ The policy sets out a 72% waste diversion from landfill target by 2025.

Recycling Victoria commits to "stimulate innovation and the development of new technologies that wili realise future recycing opportunities currently not available."
In the policy, the Minister for Energy (Victoria), Lily D'Ambrosio, outlines the support her Government is committing to aid industry in achieving these targets.

...We'll support industry and innovation, advancing research and development and supporting clean tect nologies that will create new markets and new business opportunities for recycled materials. Recycling Victoria will reduce waste, recease recycling and create more value from our economy. ${ }^{2}$

The Hon. Lily D'Ambrosio, Minister for Energy

Report at a glance

Licella, supported by Amcor, Coles, IQ Renew, LyondellBasell, and Nestlé, conducted this feasibility study, with the advice of a group of specialist consultants, to explore the potential of a local circular economy for plastic.

Our partnership is guided by our recognition that a successful transition to a circular economy for plastic can only be achieved through collaboration. We also believe that the system-wide transformation required for Australia to meet its plastic recycling targets needs governments to come on the journey with us - both to set appropriate policies, and to invest where it is needed.

This report outlines the exciting potential and considerable benefits of advanced recycling for Australia. It focuses on flexible plastic (also known as soft plastic), particularly post-consumer packaging, with most of this currently going to landfill.

Advanced recycling:

Can produce food-grade plastic packaging with recycled content.

High demand for recycled content by food manufacturers locally and internationally.

Complements mechanical recycling.

Is a new advanced manufacturing industry.
Can increase the national plastics recycling rate to help achieve the national 80% resource recovery target.

Supports the waste hierarchy, as it is a higher value, lower emissions use for packaging waste compared to waste-to-energy.

Much of the infrastructure needed is already
in place in Altona. An advanced recycling facility is the missing piece.

Is an opportunity to recycle some of the 500,000 tonnes of plastics currently going to landfill in Victoria every year.

Would give Australia, and Victoria, a chance to meet their plastics recycling targets.

Is an economically and environmentally sustainable solution for End-of-Life plastic.

Contents

Report at a glance
Introduction 7
The collaboration
Circular Economy transition 9
The proposal 10
The business case 11
The Victorian opportunity 12
Australia's linear plastics economy 16
Why do we need advanced recycling 18
Case study: KitKat pilot 19
Product stewardship 20
Feedstock. 22
Case studies: REDcycle and Curby 23
Brand demand for recycled content24
The Cat-HTR ${ }^{T M}$ technology 28
Product provenance 31
The proposed site. 32
Environmental benefits 34
Next steps 36
Appendix 37

Dr Len Humphreys CEO - Licella Holdings Limited

The technology

An innovative form of Advanced Recycling developed in Australia using hydrothermal liquefaction (HTL), water under high temperature and pressure, to chemically transform plastic back to oil. Cat-HTRTM is able to process a mix of all different types of plastic and delivers higher yields and betterquality oil than pyrolysis, with a lower carbon footprint. Proven, using the mass balance approach, to integrate within the current plastic supply chain
@Cat-HTR

Introduction

A plastic circular economy: the Australian opportunity

Collaboration makes it possible

We founded Licella in 2007 with a mission; creating a bridge to a lower carbon future Our hydrothermal liquefaction (HTL) platform is central to this study and we hope, a ke piece of the puzzle. Our study partners, Amcor, Coles, iQ Renew, LyondellBasell an Nestée, all represent important pieces of the puzzle. I am grateful to them for coming the journey with us.

Through the prototype KitKat wrapper, we demonstrated that it was possible to take post consumer plastics - such as old KitKat wrappers - and convert them into new KitKat wrappers with our technology and the existing infrastructure of our partners.

We come together with a shared vision for a more sustainable future for plastic. We understand that together we can do more than we can individually.

The next-generation of advanced recycling

Hydrothermal liquefaction (HTL) uses water as the 'chemical' to convert plastic back to oil. Unlike pyrolysis, which heats plastic in the absence of oxygen, HTL mixes melted plastic with hot, pressurised water in a 'supercritical state'. This produces higher yields of 'Plasticrude' more efficiently (using less energy), from which new plastics can be mad

Our HTL process

I am proud of our Licella team for leading this study. We have spent over 13 years developing our Cat-HTRTM advanced recycling platform. With commercial projects under development in the UK, Japan and North America, this feasibiilty study is the first step to building a circular economy for plastic in Australia.

For every tonne of plastic recycled through the Cat-HTRnw, we can produce 850 kg of synthetic oil (85% plastics to oil conversion). This oil is used as a substitute for fossil oil the existing plastic supply chain, creating a circular pathway for End-of-Life plastics tha would otherwise go to landfill.

Every barrel of synthetic oil we produce, is one less barrel of fossil crude.
Every piece of plastic we recycle, is one less in landfill

The time to act is now.

Rethinking the future of plastics: a circular economy approach ${ }^{1}$

drastically reduce the leakage of plastics into natural systems \& plastics into natura systems \&
other negative externalities

Circular Economy transition

Industry collaboration pioneering a plastic circular economy

The world cannot get to net zero carbon emissions without a strong transition to a circular economy. ${ }^{1}$ We need bold action to make this happen. This bold action comes in the form of a system-wide change.

We all have a role to play - Governments, Industry, Consumers A circular economy transformation is only possible when we all do our part. The solution is collaboration, and that is at the heart of this study.

Advanced recycling helps close the loop on the 87% of plastic that isn't recycled ${ }^{2}$ in Australia each year

Plastic Waste - Advanced Recycling Feasibility Study - Geelong-Altona Industrial Corridor: The opportunity for a local circular economy for plastic investigates the exciting potential and considerable benefits of advanced recycling for Australia. It looks at the potential for Victoria to take a leadership role in creating a new advanced manufacturing industry. This report focuses on flexible (soft) plastic, particularly postconsumer packaging, with most of this currently going to landfill.

We cannot get to net zero carbon emissions without a circular economy
The Ellen Macarthur Foundation estimates that around half of global emissions come from the products we consume in modern society. ${ }^{1}$ While a transition to renewable energy is essential, it only solves half the emissions problem.
The Circular Economy is not only the new economic framework that will drive the jobs and industries of the future in Australia, it also has a critical role to play in reducing carbon emissions, tackling consumption and protecting biodiversity ${ }^{1}$ It is an opportunity to create value from what was previously lost to landfill or the environment, and shift society from linear (take, make, waste) to circular (use, reuse, recycle).?

[^0]
Plastic recycling rates are still too low

Globally, organisations and governments have tried to rise to the challenge of improving the way we make and manage plastic. Despite this, recycling rates around the world are still low.

The National Waste Policy Action Plan 2019 (DEE, 2019), sets out a clear target for Australia to reach by 203080% average resource recovery rate (Action 3.21) 3.

In Victoria, the Recycling Victoria: A new economy (2020) policy sets out a 72% waste diversion from landfill target by $2025 .{ }^{4}$

[^1]
The proposal: A new advanced manufacturing industry in Victoria

Impact

Our proposed advanced recycling plant would:
Initially process 20,000 tonnes per annum of End-of-
Life plastics with a plan to expand to 120,000 tonnes
per annum

Significant job creation and economic benefits from proposed plant:

Direct jobs: initially 31 , increasing to 83 for plant operation and project development
(Indirect jobs: initially 57 , increasing to 152 in long term across the supply chain

Over 80 construction jobs created during the facility's expansion over the 5 year period investigated

Future opportunity

The proposed plant's modular design allows for easy expansion. Within 5 years, over 300 people could be employed, with the facility contributing over $\$ 100$ million a year to the local economy.

Once established, similar plants can be replicated around the country, with the established Victorian infrastructure used as the hub to supply Australia and take advantage of significant export opportunities.

The business case for advanced recycling

As part of the study, Envisage Works was commissioned to investigate the long-term availability of suitable plastic feedstocks for the Cat-HTRTM advanced recycling process, and assess the local Australian demand for recycled packaging from major FMCG companies. This brand demand research was conducted in conjunction with AFGC (Australian Food and Grocery Council)

The findings of both the availability of suitable plastic feedstock and the brand demand for recycled content were extremely positive.

Availability of suitable plastics in Victoria

The study found it highly likely that a Cat-HTRTM facility would have little trouble sourcing End-of-Life plastic feedstock from Victoria for the initial plant (649,000 tonnes of plastics reaching End-of-Life in 2019-20).

Adartionally, previously exported plastic will no longer be exportable following the implementation of the federal Waste Export Ban on unprocessed scrap plastics. ${ }^{1}$ 'Without significant further local processing, this material will likely go to landfill.
The cost of disposal continues to increase with both the metro and nonmetro landfill levies in Victoria continuing to increase (please refer to page 14), further discouraging the disposal of plastics to landfill. On top of this there is a variable gate-fee added by waste providers. ${ }^{2}$

Demand for recycled plastic content

There is growing commitment from companies to partake in product stewardship schemes to ensure the material used for their products is recovered in a socially responsible way.

Local and international markets for 100% recycled content polypropylene (PP) and polyethylene (PE) resins are deep, with the local market for Post Consumer Recycled (PCR) resin into packaging conservatively estimated to reach 60,000-100,000 tonnes per year by $2025 .{ }^{3}$

Impact on packaging pricing

Both PP and PE virgin resin currently sell for between \$1,500-\$2,200 AUD per tonne. ${ }^{3}$ Post Consumer Recycled (PCR) resin, is reported as selling at $2-2.5$ times the price of virgin polymers in European and North American markets ${ }^{3}$, reflecting the additional costs associated with making PCR resin and establishing the new infrastructure required
A 100% price premium on virgin resin (resulting in the PCR resin being double the price of virgin), would result in an increase in the finished film cost of around $30-50 \%$. However, it is important to note that this assumes the film has 100% recycled content. ${ }^{3}$

[^2]estudy found that corretly pastic packacin fim (100% w in resin based) is around 1% of the total input material costs incurred by brandowners. Across the six products reviewed, the film sale price to brandowners averaged $\$ 0.018$ /pack.

Based on the current prices for virgin and PCR content resins, the use of 100% recycled content film would result in a cost increase to brand-owners of less than a cent a pack for items such as confectionery and biscuits, and an average of 1.5 c across the 6 items. ${ }^{3}$

Across the six products reviewed as part of the study, it was found that:

- Adopting 30% recycled content for the plastic packaging film would increase material input costs by 0.28% for brand-owners.?
- Adopting 100% recycled content plastic packaging film would increase material input costs by 0.92% for brand-owners.

asage wors looked at slx grocery products with flexible packaging as part of the pricing investigation within the Brand Demand report

65

The reality of the Circular Economy is that if materials are to be recycled at the end of their life, appropriate systems and infastructure need to be put in place and this costs mone. To put this in perspective, to make a tonne of plastic from used KitKat wrappers you need to collect and reprocess 1.4 million used wrappers.

That wilcost more than mand virgin materials. It will also cost more than just landfilling those 1.4 million wrappers. So a Circular Economy requires a fundamental rethink about how we price virgin materials, landfill and resource recovery

Mike Ritchie, Managing Director, MRA Consulting Group

6MRA

The opportunity for a local plastic Circular Economy in Victoria

The Geelong-Altona Industrial Corridor in Victoria is Australia's last petrochemical hub. There are a number of significant facilities in this area of relevance to the proposed Cal-HfR advanced recycling faciity, conomy The Geelong-Atona area is also close to Metroplitan Melbure with a popution of 5 mill with a population of around 5 million people.

The LyondellBasell (polypropylene) plant is integrated with the Viva Energy refinery in Geelong.

The Qenos (polyethylene) plant and cracker is located in Altona, which s a designated Petro-Chem manufacturing area zone.
The area has a skilled manufacturing workforce looking for new jobs, particularly following the recent redundancies at the ExxonMobili maximise on the export opportunity for PCR plastics, gained for
 new advanced manufacturing industry.

There is a need for additional infrastructure to meet our targets.
In April 2020, Infrastructure Victoria released Advice on Recycling and resource recovery infrastructure, that aimed to direct the Victorian Government to areas in the waste sector that require significant increases in infrastructure capacity and capability. ${ }^{1}$ Importantly, this advice provides estimates of the current and future plastics recovery capacity shortfalls in Victoria. The estimates are made by comparing current and projected plastics generation (and target recovery rates) with Victoria's current installed plastics processing capacity.

Infrastructure Victoria's Advice on Recycling and Resource Recovery Infrastructure (p50) includes a very useful summary of the projected gap in plastics processing capacity if the Victorian and Australian Government targets are to be met (see below).

Plastics processing shortfall is expected by 2025 (tonnes)
$\left.\begin{array}{llll}\hline \text { Priority material } & \mathbf{2 0 2 5} \\ \text { (COAG ban \& } \\ \mathbf{7 0 \%} \text { recovery rate) }\end{array}\right)$
Source: Infrastructure Victoria (2020).

Plastic challenge, plastic opportunity

The plastic paradox

We understand that plastic is a necessary part of modern society - it protects our food, extends its life and keeps it safe to eat. It is used to securely packege medicines, and it helps enable a global economy but, it has come at a cost. Plastic is so efficient, cheap, lightweight and versatile that a significant proportion of it has become a linear resource; one we use once and dispose of.

- Globally, 91% plastic has not been recycled. ${ }^{1}$
- 40% is packaging, typically used for < 6 months.

The demand for recycled plastic continues to accelerate around the world. Enabling advanced recycling is critical to generate circularity for flexible packaging. End-consumers' needs are constantly changing. It is upon us to be part of the solution, supporting the development of new technologies, to help deliver local sustainable packaging solutions.
Simon Roy - Vice President \& General Manager Amcor Flexibles ANZ
amcor

National Waste Management Target

To achieve the agreed National Waste Management
Target of 80% average resource recovery rate ${ }^{2}$, plastics will require proportionally an additional 2.5 million tonnes of recycling capacity already deployed. ${ }^{3}$

Gever, R., etal. Production, use, and fate of all plastics ever made (2017). Austraian Government- Department of Agriculture, Water and the
Environment National Waste Policy yction Plan (2019). Environment. National Waste Policy Action Plan (2019).
Based on Primary Research conducted Dy consultancy Envisage Works (2021). 4. Planet Ark. So you think you can reeycle? (2016).

We need a rapid, system-wide transformation Research by Planet Ark shows that 90% of Australians think recycling is the right thing to do. ${ }^{4}$ Unfortunately, a lack of recycling
infrastructure, the limitations of mechanical recycling for some types inirastructure, the imitations of mechanical recycing for some types of plastic (such as packaging), together with a lack of consistent is not reflected in our national plastic recycling rates. is not reflected in our national plastic recycling rates.

We need a rapid, systems-wide change to the way we manage plastic.

Victoria needs higher recycling capacity
The importance of the waste hierarchy
The Victorian waste hierarchy expresses a preferential order to managing waste, and is embedded in state and territory policy frameworks. ${ }^{1}$

Advanced recycling complements mechanical recycling and supports the waste hierarchy.
(-)
MOST PREFERABLE

TREAT WASTE

DISPOSE OF WASTE

LESS PREFERABLE
Advanced recycling will help to close the loop on the vast majority of post-consumer plastics that go to landfill. It is a higher value, lower emission option compared to energy recovery (waste-to-energy).
New mechanical recycling facilities are unlikely to impact the demand for advanced recycling, given the shortfall in overall reprocessing capacity and the demand for PCR resin in packaging. By converting End-of-Life plastic back to oil, all new plastic produced through advanced recycling with the Cat-HTRTM advanced recycling technology can be food-grade.
Landfill levies in Victoria are set to increase, a further disincentive to sending plastic to landfill. This study has shown that a Circular Economy for plastic is possible but requires a fundamental shift in how we manage plastic. This will only be possible with investment into new infrastructure.

All future investment into recycling must consider the waste hierarchy to ensure the highest value, lowest emission option is selected to reach our resource recovery targets.

Australia's linear plastics economy

Recycling rates for plastic in Australia have continued to remain stubbornly low. The majority of End-of-Life plastics are discarded to landfill each year, with only 13\% of total End-of-Life plastics directed to mechanical recycling during 2019-20. This demonstrates a clear need for new reprocessing approaches to help close the loop for different streams of End-of-Life plastic products and packaging. Advanced recycling offers a profound opportunity to complement mechanical recycling in helping to increase the total capacity for plastics recycling in Australia.

Annual Australian plastics recovery rate 2009-10 to 2019-20

2009-10	16.7\%
2010-11	16.0\%
2011-12	16.2\%
2012-13	15.8\%
2013-14	15.6\%
2014-15	16.3\%
2015-16	15.1\%
2016-17	12.9\%
2017-18	14.4\%
2018-19	15.8\%
2019-20	13.1\%

Source: National Waste Report (2020), Envisage Works (2021).

We need local solutions

The current recycling rate relies heavily on the export market
As can be seen from the chart below, of the plastics that are recovered there has been a strong reliance on exports for export these materials as we have been doing, will be significantly curtailed when the waste export bans come into effect. into effect.

Annual Australian plastics recycling 2000 to 2019-20, by location of reprocessing (tonnes)

Exporting mixed waste plastics for recycling is no longer an option
From July 1 1st 2021, mixed waste plastics that contain PET or HDPE can no longer be exported from Australia. It is estimated that around 63% of the otal 47,300 tonnes of scrap plastics exported from Victoria in 2019-20 are mixed and will thus be subject to the mixed polymer and export ban. Of this figure, around 16,600 tonnes is mixed polymer suitable for processing in the Cat-HTRTM facility. ${ }^{3}$

From July ${ }^{1 s t} 2022$, the remaining 37% of scrap plastics are likely to become impacted by the export ban (i.e., sorted but not upgraded waste plastics). ${ }^{3}$

This would result in an additional $\sim 9,500$ tonnes of mixed polymer suitable for processing by the Cat-HTRTM facility becoming available.
(1) The waste export ban states that from 1 July 2021 you cannot export mixed waste plastic, for example bales that include a combination of PET and HDPE From 1 July 2022 you cannot export plastic that has been sorted only.?

[^3]
Why do we need advanced recycling?

Food packaging serves a very important function, keeping our food fresh and safe to eat. These benefits come with challenges, particularly whe dealing with multi-layer plastic packaging with multiple polymer types.

Packaging makes up 40\% of all plastic applications

 globally ${ }^{1}$We will not reach our ambitious 2025 Plastic Packaging Targets ${ }^{2}$ without advanced recycling. Food-grade recycled plastic packaging is a key missing link in Australia's bid to improve waste management and build a Circular Economy. A lack of both collection and processing infrastructure is making it difficult to keep plastic out of landfill and virtually impossible to meet the demands for packaging with Post Consumer Recycled (PRC) content. Advanced recycling of plastics is the only way to recycle a significant portion of plastics back into new
food-grade plastics. food-grade plastics.
The Cat-HTR ${ }^{T M}$ technology is an Australian innovation that is ready for commercial roll-out, enabling a Circular Economy for plastic packaging to become a reality in Australia.

. APCO. The Australasian Recycling Label Program (2018)

6

This collaboration is an amazing and inspiring Australia taking over the world story... It is the result of innovative companies seeing an opportunity, taking the lead and creating a product that excites their customers.... That spirit of innovation is easier to loster if Government is able to create the environme of policies, laws and settings that can help su entrepreneurs and innovators to succeed.

The Hon Trevor Evans MP - Assistant Minister for Waste Reduction \& Environmental Management

6

For Nesté to fufill our vision for a waste-free future we need to start thinking of used packaging as a esource, not as a waste. The answer is clear: we need better fur for was iechealy possible wo devep Wil take collective will al con in a reality.

Sandra Martinez - CEO, Nestlé Oceania
㷠 Nestle

Case study: Australia's opportunity to close the loop on food-grade flexible plastics

The KitKat pilot represented Australia's first plastic food wrapper made with Post Consumer Recycled content.

The prototype Kikat wrapper was created by a coalition of companies including Nesté, CurbCycle, iQ Renew, Licella, Viva Energy Australia, LyondeliBasell, REDcycle, Taghleef Industries and Amcor. Each organisation brought their individual expertise together to collect and process waste sof plastic, turn it back into oil, and create the prototype wrapper.
The feedstock for the wrappers came from the Curby soft plastic collectio trial on the NSW Central Coast, together with soft plastic collected via the REDcycle supermarket soft plastic collection
To date, soft plastics collected in Australia have been made into products like outdoor furniture, added to road base or used in waste-to-energy.

To create the KitKat wrapper with 30% recycled content (demonstrating the ISCC PLUS and mass balanced methodology), the soft plastics were processed, then sent to Licella for conversion back into oil using the Cat HTRTM advanced recycling technology. This oil was then used within the existing plastic supply chain to produce new food-grade soft plastics.
Sandra Martinez, CEO of Nestlé Oceania, said the project had been driven by a shared determination to resolve the soft plastics challenge - and an enormous amount of good wil.

"Manufacturers like Nestlé will have a key role in driving demand for food grade recycled soft plastic packaging, and creating market conditions that will ensure all stakeholders throughout the value chain view soft plastics as a resource and not waste.

Sandra Martinez - CEO, Nestlé Oceania

The prototype KitKat wrapper was created by a coalition of companies with a shared vision

Why it's important

There is an increasing shift from industry to recycle plastics, with major companies that use plastic in their products wanting the material to be recycled in a socially responsible way, such as reprocessing at a recycling facility.
It is impossible to implement plastic stewardship schemes without appropriate technology to process the waste material recovered.

Collection schemes for soft plastic

- The best-known product stewardship scheme for End-of-Life plastics in Australia is the REDCycle soft plastics collection bins in supermarkets (see Case Study on paee 23) The scheme has collected over 295 bill pieces of plastic since it launched in 2011
- Similar schemes exist for a variety of agricultural plastics.
- The AFGC is developing a National Plastics Recycling Scheme (NPRS), which aims to collect and recycle nearly 190,000 tonnes of plastic packaging per annum by 2025 .
- A pilot program Curby (see case study on page 23) is leveraging existing household recycling services, with residents using a bag to collect their waste soft plastics and place them in their usual recycling bin. This plastic has already been used in advanced recycling trials.

New potential supply of soft plastics from these

 schemesThe four high relevance schemes highlighted by Envisage Works (in the table on page 21) will generate around 600,000 tonnes of 'new' recovered plastics, which will primarily go to landfill, if they achieve their stated targets.?

Advanced recycling is a scalable solution for these difficult to recycle plastics
nhew product stewardship schemes under development, and the opportunity to expand ones already in place, we must consider the recycling capacity in place.
The proposed Cat-HTRTM advanced recycling facility can process the vast majority of the plastics collected by the schemes listed in the table on the next page, including plastics that are difficult to recycle mechanically, such as soft plastic packaging.
Expanding these schemes in parallel to building the advanced recycling infrastructure necessary to recycle them is essential to ensure the additiona plastics collected are not sent to landfill or energy recovery in line with the preferences set out in the established waste hierarchy.

66

ur industry is committed to working with stakeholders across the value chain to deliver solutions that reduce plastic waste and create an Australian Plastics Circular Economy. We are uniquely placed to offer our expertise in polymer technology, engineering and manufacturing at industrial scale to support the adoption of new, advanced recycling technologies that will enable Australians to maximise the potential of our valuable plastic resources.

Samantha Read - CEO, Chemistry Australia

Product Stewardship Scheme	Operator	Type of scheme	Target materials	Relevant targets	Potential new supply	Relevance rating
1. Australian Packaging Covenant	APCO	Coregulatory	Rigid and flexible (soft) plastic packaging (and all other packaging).	70\% of Australia's plastic packaging will be recycled or composted by 2025 (cf. 18\% in 2018-19)	520,000 tonnes	High
2. National Plastics Recycling Scheme	TBC	Under development	Flexible (soft) plastic packaging	70\% of Australia's plastic packaging will be recycled by 2025	300,000 tonnes (overlaps scheme 1)	High
3. REDcycle	RED Group	Collection program	Flexible (soft) plastic packaging.	None	10,000 tonnes (overlaps scheme $1+2$)	High
4. Non-packaging agricultural plastics	RM Consulting Group	Under development	Mixed plastics - grain bunker bags, silage/net wrap, plastic dripper pipe, films, nets.	Under development	84,000 tonnes	High

Source: Envisage Works (2021)
It appears possible that all four of these schemes could be generating large quantities of recovered plastics across the next 2-5 year period. ${ }^{2}$

Feedstock for

 advanced recycling
National Plastics Recycling Scheme (NPRS)

Austraia's food and grocery manufacturers, represented by peak body the Australian Food and Grocery Council (AFGC), will develop Australia's recycle nearly 190,000 tonnes of plastic packaging per annum by 2025 .'

The scheme will initially focus on increasing the diversion of soft plastics such as bread, cereal and frozen vegetable bags, confectionery wrappers and toilet paper wrap from landfill and it will move on to support the increased recycling of other plastics that are currently difficult to coliect and/or recycle. As an industry-led and funded scheme, the NPRS will coordinate and focus the efforts of well-known food and grocery brands to significantly increase the recycling and reuse of plastic packaging.
This will build on existing soft plastics recycling initiatives including the industry funded REDcycle program and the Curby soft plastic kerbside collection trial supported by Central Coast Council, Nestlé and iQ Renew.

Container Deposit Schemes

A Container Deposit Scheme (CDS) refers to the collection of drink containers in exchange for a refund. They involve the addition of a small refundable deposit being added to the price of a beverage at the point of sale. This increase in cost is partially paid by the consumer and by the beverage company.
It is an existing example of product stewardship legislation in which the beverage industry is obliged to take greater responsibility for its packaging after it has been sold

Currently, SA, Northern Teritory, NSW, Queensland, the ACT and WA have Container Deposit Schemes. Tasmania and Victoria have announced their scheme models which are expected to launch in late 2022 and 2023 respectively. ${ }^{2}$

Return and Earn began in NSW on 1 December 2017. At the time, drink containers made up 44% of all litter in the state and cost more than $\$ 162$ million to manage. In 2020 there was a 52% reduction in the volume of eligible container litter in NSW. ${ }^{3}$
These schemes give Material Recovery Facilities (MRFs) a relatively clean stream of plastics to recover. In NSW, it has allowed for an additional 300,000 tonnes of plastic material to be recycled.3

Austriain Food \& Grocerery Counci. Food and grocery manufacturers step up with national plan to tackle plastic (2020).
NSW EPA. Return and Earn (2022)
REDoycle. About REDcycle (2021).
Curboccle. Cleaning up Austraia in a fun and rewarding way (2021).

22 | Advanced Recycling Feasibility Study
(i) Return and Earn

The Return and Earn Scheme came in that added 20 c to a drinks bottle to pay for the recycling infrastructure. This shows its possible to add costs to enable circularity

REDcycle - Soft

 plastic collection via supermarketsThe REDcycle Program was developed and is run by Melbourne based RED Group. It is a recovery initiative for post-consumer soft plastic. The REDCycle Program has partnered with participating supermarkets all throughout Australia
According to the REDcycle website, "II forms a product stewardship model where manufacturers, retailers and consumers are sharing responsibility in creating a sustainable future.,"

The scheme has already collected over 2.95 billion pieces of plastic since it launched in 2011.4 This study found that the scheme could deliver a potential 10,000 tonnes of additional plastic supply to advanced recycling (see table on page 21).

66

We are delighted to have supported the study which has demonstrated the potential to close the loop on soff plastics, enabling them to be converted into food-grade soft plastics that could then be used in food packaging. Our ambition is to be Australia's most sustainable supermarket and we are committed to ensuring we are contributing to the circular economy and supporting a more sustainable future for plastic packaging.

Thinus Keevé - Chief Sustainability, Property \& Expor Officer, Coles
coles
3
(o)

Case Study

Curby - Soft plastic kerbside collection program

Nestlé and Australian recycler iQ Renew announced a coliaboration to trial the Curby program at the National Plastic Summit in March 2020. The trial has so far collected $6,673 \mathrm{~kg}$ of soft plastic from 2,280 households on the NSW Central Coast. ${ }^{5}$ Following the success of the trial, the Curby program has been extended to all residents within Central Coast Councii, the second largest LGA in Austraila.
Participating households collected their clean soft plastics in a purposemade bright yellow 'Curby' bag, then when the bag is full, tie it up, tag it and place it in their yellow recycling bin for pick up with their regular recycling collection.

Tags identify the bags and help to improve the sorting process, ensuring they can be separated from other recyclables. The soft plastics were used by Licella at its Cat-HTRTM advanced recycling pilot plant, including as feedstock for the recycled Kitkat wrapper prototype.

66

Currently there's no commercial solution in Australia that can efficiently deal with soft plastics. Unfortunately, most of them end up in landfill. Programs like Curby help us to collaborate with the community and give us the ability to harvest these soft plastics as a resource for advanced recycling, turning them back into new plastic.
Danial Gallagher - CEO, iQ Renew
(i) iQRenew

How will brands reach their sustainable packaging commitments without advanced recycling?

This report shows there just aren't enough recycled polymers to meet the current brand demand, let alone the future brand demand based on these commitments.

Some forms of plastic are essential and therefore can't be designed out of packaging.

Flexible (soft) plastic is still a major challenge for mechanical recycling, particularly when the packaging is multi-layered and needs to be sorted by type.

As part of this Feasibility Study, Envisage Works conducted a study that investigated the demand for recycled polymers from major producers and brands in Australia and globally. This demand is a direct result of the world's biggest FMCG brand's commitments to meet the targets set well as, acting upon increased consumer demand for recycled packaging.

Demand for recycled polymers is well above supply, and the gap is forecast to grow
By 2025, the unmet global demand for recycled polymers will be over 2 million tonnes and this will climb to 10 million tonnes by 2030. ${ }^{1}$ The supply of recycled oil from End-of-Life plastics is currently extremely constrained, with polymer suppliers struggling to meet demand across the world. ${ }^{2}$

Even with relatively easy to collect and process plastic products, such as PET and HDPE bottles, the capacity for mechanical recycling to supply Australian demand for recycled polymers is already being approached. This is despite there being well under 20% Post Consumer Recycled content in these packaging formats.

Commitments from brands and polymer resin manufacturers exceed recycled oil supply
At present, 15 of the largest global brands have committed to targets of 50% to 100% recycled content plastic resin in their products by 2030.1 More companies are stepping up and starting to accept responsibility for the sustainability of their products and its End-of-Life, but they are limited by the small volumes of recycled content polymer available.

Recycled Content Targets for 15 Global Packaging Brands
 5\% 56\%

Global
15 of the top global FMCG brands

Brands Commitments

2.15 million tonnes

15 of the largest global brands have committed to meet this target for recycled plastic content by 2025.

4 million tonnes
This figure grows to 4 million tonnes to meet the targets set for 2030.1
0.35 million tonnes

Only a fraction of this target is being met by brands currently (2019). ${ }^{1}$

Polymer Manufacturer Commitments

2.4 million tonnes

8 of the world's leading polymer resin manufacturing companies have targets to reach a total of 2.4 million tonnes recycled and renewablebased polymers by 2025.
9.5 million tonnes

This figure grows to 9.5 million tonnes by $2030 \mathbf{1}^{1}$

Gs

yondellBasell's ambition is to produce and market two million metric tons of recycled and renewable-based polymers annually, by 2030. Our participation in this lobal effirts to enable our customers and value chain partners to find solutions to transform their businesses. For advanced recycling to be viable in Australia and ontribute to the circular economy of plastios, locat refining and polymer production infrastructure needs to be etained."

Mitchell Killeen - Managing Director, LyondellBasell
lyondellbasell

The gap between demand and supply

There is high demand from brands both locally and internationally for Po Consumer Recycled (PCR) plastic content, to help meet their sustainable
packaging commitments. packaging commitments.
Advanced recycling gives brands an opportunity to source this food-grade PCR plastic locally, creating local jobs, and increasing plastic recycling rates in the process. In addition, the scalable nature of the proposed Cat-HTR facility means that there is an exciting export opportunity. Globally, brands are aiming to use a total of 2.15 million tonnes of recycled content plastic in their products by 2025 and a total of 4 million tonnes by 2030 (see appendix page 37).

The 2025 National Packaging Targets are supported by Australian industry and government to deliver a new and sustainable approach to packaging. They apply to all packaging that is made, used and sold in Australia. APCO is the organisation charged by government to facilitate the delivery of the 2025 Targets.

APCO 2025 Recycled Content in Packaging Targets ${ }^{2}$

PACKAGING MATERIAL TYPE	CURRENT RECYCLED CONTENT RATE	2025 TARGETS
ALL PLASTICS	2%	$\mathbf{2 0 \%}$
PET	12%	30%
HDPE	2%	20%
PP	3%	20%
FLEXIBLE PLASTICS	UNKNOWN	10%

Source: APCO (2021)

66

This project is an important step towards addressing the challenge of building a circular economy for soft plastics and Australia's achievement of the 2025 National Packaging Target for recycled content. Industry is driving this collaborative approach by tackling this challenge head on and bringing advanced technologies into action to support Australi's market demand for getting recycled materials back into our packaging.
Brooke Donnelly - CEO, APCO
APCO $=$
3. Based on Primary Research conducted by cons See Appendix.
meet APCO's 2025 National Packain Targets, a commitment To meet APCO's 2025 National Packaging Targets, a commitment to
use an average of 50% recycled content in packaging by 2025 has bee put in place. ${ }^{1}$ As a result, the demand for fooc-grade recycled content is expected to grow significantly. However, without local supply, packaging manufacturers may be forced to source packaging or recycled polymer from overseas.

Current local supply vs demand

Post Consumer Recycled (PCR) plastic in packaging vs the 2025

 National Packaging Target:220/0 current
$20 \%{ }^{2025}$ target

The gap in local supply
Additional PCR plastic required:
137,000 tonnes by $2025 .{ }^{3}$ Note: HDPE, LDPE and PP only. Accounts for APCO targets and projected demand growth.

Opportunity to supply global market

Toal PCR p pasitic equired globally needed
4 million tonnes by $2030 .{ }^{4}$

The ANZPAC Plastic Pact is a collaborative solution that brings together key players behind a shared vision of a circular economy for plastic. Members players behind a shared vision of a circular economy for plastic. Members ANZPAC work together towards ambitious 2025 targets across the packaging and increasing plastic packasing collected and effectively recycled by at least 25%. It is a voluntry scheme that demonstrates an industry-wide commitment to more sustainable plastic.

More information www.anza ${ }^{\text {asticspact.org.a }}$

What kinds of plastic will the Cat-HTR ${ }^{\text {TM }}$ facility recycle?

The Cat-HTR ${ }^{\text {mM }}$ advanced recycling facility will be able to process a range of mixed End-of-Life Plastios that are difficult to recover mechanically. The vast majiority of these plastics currently go to landifll.

Please refer to the Appendix (page 39) for a more detailed explanation of the polymer types suitable for this advanced recycling facility.
Plastics the facility will be able to process include

Plastics that currently go in household waste (landfill) bins (e.g. soft plastics).

Plastics that go in household recycling bins that can't be mechanically recycled.

Plastics collected from product stewardship schemes.

Agricultural plastics from
consumer \& industrial applications.

Plastics from consumer \& industrial applications.

The technology
How hydrothermal liquefaction works

- - Licella"

The Evolution of Advanced Recycling - HTL is The Next Generation
century
century

PYROLYSIS
Converts feedstock to oil by heating
it in the absence of oxygen.

wwil Onwards

GASIFICATION
Converts feedstock into gases at high
emperatures (typically $>700^{\circ} \mathrm{C}$).

Licella begins continuous modern process early 2000s

HYDROTHERMAL LIQUEFACTION Converts feedstock to synthetic oil using water under high temperature and pressure.

Australian developed advanced recycling technology

Licela is recognised as the global leader in hydrothermal liquefaction (HTL), the next-generation of advanced recycling. This Cat-HTRTM HTL technology is at the core of the advanced recycling plant proposed in this study.
By using water to control the thermo-chemical reactions, Licella reports that the Cat-HTRTM process perates at lower temperatures, using energy and retains more carbon in its products, compared to pyrolysis and gasification

HTL is the most recent form of advanced recycling, using water at high temperature and pressure to take plastic back to its chemical building blocks.

Analysis completed on behalf of Licella, by an independent industry consultant, has shown that using the Cat-HTRTM platform to recycle plastic to oil creates double the value with half the emissions compared to incinerating the same plastic for energy (waste-to-energy)
The Cat-HTRTM technology has been extensively tested by Licella at their commercial demonstration plant in NSW on a wide rane of End-f L ise plastics. The platform can chemically recycle mived plastics, without needing to sort them by polymer type a maior advantage compared to pyrolysis. It also successfilly recycles multi-layer plastic packaging

High temperature and pressure water is used in the Cat-HTR ${ }^{\text {TM }}$ HTL process (supercritical water is a state of water that occurs above 'critical' conditions of $374^{\circ} \mathrm{C}$ and 218 bar).

Water rapidly diffuses through the plastic and breaks the polymer bonds, which then re-arrange to form the 'Plasticrude' oil.

Using water helps control the process, meaning it uses less energy than other approaches and converts more plastic to oil.

Advanced recycling complements mechanical recycling

While some big-name brands have made the switch to using 100% recycled PET for their beverage bottles, the cap and label are usually still made from virgin materials. This is due to the need for the cap, in particular, to be made from food-grade content (which is difficult to achieve through mechanical recycling).

All new plastic created from advanced recycling is food-grade, so the whole bottle could be made with Post Consumer Recycled plastic.

The proposed Cat-HTRTM plant can recycle most plastics that are difficult to recycle mechanically, without the need to sort them by polymer type. The process can comfortably recycle a mix of flexible plastics (including packaging and labels) and other mixed plastics tha are today problematic for mechanical recycling.

The only plastics that need to be removed are chlorinated plastic such as PVC, which is on APCO's list of problematic plastics to be phased out in packaging.

1. Based on the National Waste Report 2020 Data and Primary Research conducted by
2. APCO. APCO Action Plan for Problematic and Unnecessary Single-Use Plastio 30 | Advanced Recycling Feasibility Study

Product provenance provides confidence and assurance

In order to give both consumers and brands confidence that the plastics they are buying have come from Post Consumer Recycled (PCR) plastics, it is important that the provenance of the products can be demonstrated.

Forturatel, this requirement is not a new chalenge. It has been neeessary to provide similar assurances for consumers of renewable electricity or fair trade products, and accreditation organisations such as $I S C C^{1}$ and RSB have offerings and services to achieve this.

The various parties in the supply chain will need to understand their obligation and requirements, put appropriate procedures in place and be independently audited to ensure compliance. Once this is completed, appropriate on-pack certification can be made.

Our proposal is that a product provenance scheme for recycled plastic content in packaging would be established. In the area of PCR plastics, ISCC has an offering called ISCC Plus.

[^4]

The proposed site

The proposed site for this Cat-HTRTM facility is located at the under-utilised Dow Chemicals (Dow) manufacturing site in Altona (Victoria), which Dow previously used to manufacture over 100,000 tonnes of petrochemicals annually.

The area is in a designated Special Use Zone (SUZ) for petrochemica manufacture (SUZ3) with significant buffer zones of over 1.3 km to the nearest residential areas (see Figure 1 above)

Dow have decided to retain ownership of the site and are looking fo appropriate tenants. One of the tenants Dow has engaged on the site are EnviroPacific, a soil remediation company

mage above: Entry to the existing site owned by Dow Chemicals, a designated SUZ3 area

Commitment to sustainability

The electrical power for the site will be generated from 100% renewable electricity with a 2.4 MWh solar array to deliver $\sim 20 \%$ of the sites electrica demand, with the balance coming from other renewable sources.
Calorific gas produced in the Cat-HTRTM manufacturing process will be used for energy in a boiler to generate the supercritical water for the process. See the process diagram on page 28 for further details.

Opportunity to expand, creating further economic boost for the area
As seen from the above site map, there is room for expansion to process higher volumes of End-of-Life plastics, creating additional jobs and economic benefits to the area

Alongside increasing recycling
rates for plastics, advanced
recycling also delivers significant environmental benefits.

Every barrel of oil we are able to manufacture in Australia is a barrel of oil that doesn't need to be extracted from somewhere in the world and transported here for our use. This results in reduced greenhouse gas (GHG) emissions.
For every tonne of residual plastic waste processed, the Cat-HTRTM technology provides a saving of 1.8 tonnes f CO_{2}-e emissions in comparison to waste-to-energy (NtE), presenting a better environmental outcome and emonstrating why advanced recycling should be given preference to residual plastic over WtE facilities

The Cat-HTRTM facility will produce a synthetic oil that can displace conventionally extracted crude oil, which would therwise be imported to Australia. The GHG emissions ssociated with producing synthetic oil through the Cat HTRTM platorm would reduce GHG emissions by 64%,

Cat-HTR ${ }^{\text {TM }}$ oil delivers 64% CO reduction vs conventional crude?

GHG emissions generated during the production of 1 tonne of Cat-HTR ${ }^{\text {TM }}$ oil vs fossil crude oil ($\mathrm{kg} \mathrm{CO}_{2}$-e)

Cat-HTRTM product (Plasticrude)	203
Conventional crude oil	566
Reduction	363
\% Variation	-64%

Source: Lifecycles Life Cycle Assessment (LCA) 2021.

For example, once scaled to 120,000 tonne per annum dvanced recycling facility will produce 102,000 tonnes ecycled Cat-HTRTM oil. This results in a GHG saving of approximately 6,000 tonnes CO_{2}-e per annum, compared

These GHG savings are equivalent to:

(05 84,000
 barrels of oil consumed, or;
 $\sqrt{7}-9,000$ electricity for homes

Additional benefits are also delivered hrough reduced particulate emissions (air pollution) and reduced water usage

	Particulate Matter $G P M_{2.5} E Q$	Consumptive Water Use L
Cat-HTRTM	-90.0	0.13
Landfill	2.74	0.29
Waste-to-energy	2.48	2.36
Source: Lifecycles Life Cycle Assessment (LCA) 2021.		

Top Global FMCG Brand Performance vs Commitments

Brands are aiming to use a total of $\mathbf{2 . 1 5}$ million tonnes of recycled content plastic in their products by 2025 and a total of $\mathbf{4}$ million tonnes by $\mathbf{2 0 3 0}$. With only $\mathbf{3 5 0 , 0 0 0}$ tonnes of recycled content plastic used by brands in 2019 , there is a deficit of at least 1.8 milion tonnes for 2025 commitments and a shortfall of 3.7 million tonnes for 2030 .

Brand Demand and Shortage in Supply of Recycled Polymers

Company	Total Plastic Packaging (tpa)	Recycled Content Plastic ${ }^{1}$						Additional Recycled Content Plastic required to meet 2025 demand (t)	Additional Recycled Content Plastic required to meet 2030 demand (t)
		$\begin{gathered} 2019 \\ \text { Progress } \\ (\%) \end{gathered}$	$\begin{gathered} \text { Amount } \\ \text { (t) } \end{gathered}$	$\begin{gathered} 2025 \\ \text { Target } \\ (\%) \end{gathered}$	$\begin{gathered} 2025 \\ \text { Amount (t) } \end{gathered}$	$\begin{gathered} 2030 \\ \text { Target } \\ (\%) \end{gathered}$	2030 Amount		
Coca-Cola and Resort	2,981,421	9.7\%	289,198	25\%	745,355	50\%	1,490,711	456,157	1,201,513
Colgat-Palmolive	275,440	7.0\%	19,281	25\%	68,860	50\% ${ }^{\text {8 }}$	137,720	49,579	118,439
Danone S.A.	800,000	10.6\%	84,800	50\%	400,000	100\%	800,000	315,200	715,200
Diageo	31,900	2.5\%	798	40\%	12,760	100\%	31,900	11,963	31,103
Essity	62,300	0.0\%	0	25\%	15,575	50\% ${ }^{8}$	31,150	15,575	31,150
Henkel	361,000	8.5\%	30,685	30\%	108,300	$50 \%{ }^{\text {8 }}$	180,500	77,615	149,815
Kellogg	62,927	0.5\%	315	10\%	6,293	$30 \%{ }^{\text {8 }}$	18,878	5,978	18,563
L'Oreal	137,280	6.9\%	9,472	50\%	68,640	100\%	137,280	59,168	127,808
Mars, Incorporated	191,217	0.0\%	-	30\%	57,365	$50 \%^{8}$	95,609	57,365	95,609
Mondelez	187,000	0.3\%	561	5\%	9,350	$25 \%{ }^{\text {8 }}$	46,750	8,789	46,189
Nestlé	1,524,000	2.0\%	30,480	30\%	457,200	50\% ${ }^{\text {8 }}$	762,000	426,720	731,520
Pepsico	2,300,000	4.0\%	92,000	25\%	575,000	50\%	1,150,000	483,000	1,058,000
Proctor and Gamble	600,000	5.7\%	34,000	30\%	180,000	50\% ${ }^{\text {8 }}$	300,000	146,000	266,000
SC Johnson	100,700	14.0\%	14,098	15\%	15,105	$30 \%{ }^{8}$	30,210	1,007	16,112
Uniever	700,000	5.0\%	35,000	25\%	175,000	50\%	350,000	140,000	315,000
Total Plastic (t)	7,333,764		351,489		2,149,448		4,071,997	1,797,959	3,720,507

Source: Ellen MacArthur Foundation (2020).

Ellen Macarthur Foundation. The Global Commitment 2020 Progress Report (2020) Reuters. Set, miss, repeat- - big brands and plastic receccling targeats (2020). Plastics in Packagsing. Danone sign up to Canada Plastics Pact (2021). Diageo. Reinventing packaging (2020).
5. LOreal. We respect the beauty of our planet by reducing plastic packaging (2021) Pepsico. 2020 Sustainabilit Report - Goals and Progress (2020).

Oamcor coles (i)iQRenew \bullet Licella" Iyondllasell 36 | Advanced Recycling Feasibility Study
with:

Two operational polymer manufacturers committed to make PCR resins (LyondellBasell \& Qenos):

- An operational refinery, seeking to explore alternative feedstocks (Viva Energy);
- Packaging companies with high market demand for PCR plastic packaging (Amcor, Taghleef Industries, Sealed Air)
- High brand demand for PCR plastic packaging, willing to pay a premium to meet their recycled content targets (Nesté, Danone, George Weston Foods, Mars, Mondelez, Unilever)
- A suitable Cat-HTRTM facility site available close to Melbourne.

With a shared vision for a more sustainable future for plastic, this report represents our proposal to build a local advanced recycling industry that will help Victoria, and Australia, meet its sustainability commitments, significantly increase plastics recycling, and therefore significantly decreasing the amount of plastic being sent to landfill.
All this represents an amazing opportunity for Victoria to leverage its existing assets and capabilities and be at the forefront of a rapidly expanding new industry. It will create over 300 new jobs over the next 5 years, help protect existing businesses and create significant export opportunities for Australia.
The system-wide transformation required for Australia to meet its plastic recycling targets needs governments to come on the journey with us - both to set appropriate policies, and to invest where it is needed.

The first step is building a first-of-its-kind advanced recycling plant in Australia. These so-called 'Pioneer Plants' are more expensive than subsequent facilities and are therefore the ones the Capital Markets are prone to avoid. Getting this first Australian-developed advanced recycling plant built will require Government support. These sources include the Recycling Modernisation Fund and the Modern Manufacturing Initiative. Industry has already demonstrated that we can collaborate and work alongside State and Federal governments to make this happen.

Top Global Polymer Producer Commitments

To accommodate for the rising brand demand for recycled content, eight of the world's leading polymer resin manufacturing companies have set commitments to reach $\mathbf{2 . 4}$ million tonnes of recycled plastic and
renewable-based polymers by 2025 and 9.5 million tonnes by 2030 . However, their production volumes are limited by the amount of recycled oil available. With only small global capacity for producing recycled oil from recovered End-of-Life plastics, there is large opportunity for the Cat-HTRTM technology, once established, to accelerate the conversion of waste plastics to recycled oil to help meet the significant demand for recycled polymer, both locally and for this large export market.

Announced Volume Commitments from Major Polymer Manufacturers

Manufacturer	2025 Target (\mathbf{t})	2030 Target (t)
Braskem	300,000	$1,500,000$
DOW		$1,000,000$
EASTMAN	250,000	500,000
ExxonMobil Chemical	300,000	$3,000,000$
INEOS	325,000	$325,000^{9}$
LyondellBasell		$2,000,000$
SABIC	200,000	$200,000^{9}$
Shell	$1,000,000$	$1,000,000^{9}$
Total Recycled and	$\mathbf{2 , 3 7 5 , 0 0 0}$	$\mathbf{9 , 5 2 5 , 0 0 0}$
Renewable Content		

[^5]

There is local demand for recycled plastics

Local demand for Post Consumer Recycled (PCR) HDPE, LDPE and PP totaled 30,000 tonnes in 2019-20, which only makes up 4\% of the total plastic packaging placed on the market. ${ }^{1}$ To meet APCO's National Packaging Target for an average 20% recycled content across plastic packaging by 2025, there needs to be a significant increase in capacity to produce PCR resin. ${ }^{2}$

Based on the projected growth and APCO's target, this demand is estimated to rise to 167,000 tonnes of PCR resin by 2024-25. ${ }^{1}$ The means 137,000 tonnes of PCR resin must be made available on the market, additional to the current demand.'

Advanced recycling will compliment mechanical recycling

Which plastics is advanced recycling suitable for?

$\underbrace{1}_{\text {PET }}$	2 HDPE	2	(4) LDPE	5	©	$\underbrace{7}_{\text {OTHER }}$
Polyethylene terephthalate	High-density polyethylene	Polyvinyl chloride	Low-density polyethylene	Polypropylene	Polystyrene	Other
						\square
Mechanical + Advanced (Target rejects) \square	Mechanical + Advanced (Target rejects)	Specialist Recycling ${ }^{*}$	$\begin{aligned} & \text { Mechanical } \\ & \text { (limited) } \\ & + \text { Advanced } \end{aligned}$	Mechanical + Advanced	Advanced ${ }^{(}$	Advanced ${ }^{\text {a }}$
Common Products Water bottles	Common Products					
Soft drink bottles Food bottles Food jars	(mechanical)	Garden hose Pool liners Auto product bottles Twine	Bread bags Cling film Grocery bags Rubbish bags Cereal box liners Frozen food bags	Butter tubs	Food cartons	Medical containers
	Detergent bottles Shampoo bottles			Ice cream tubs	Food trays	Nylon
				Bottle caps	Packing foam	ABS
	Flower pots Toys			Take-away containers	Plastic cutlery	Acrylic PLA bottles Eyewear CDs \& DVDs
		Twine				

The opportunity for a local circular economy for plastic

Report on the findings from the joint feasibility study to determine the technical, economic, and environmental benefits of a local advanced recycling industry

Final NOVEMBER 2021

[^0]: Ellen Macarthur Foundation. Completing the picture - How the circular economy tackles climate 2. World Economic Forum. Lt's time for the circular economy to go global and you can help (2019). 3. Austraian Government Department of the Environment and Energy. National Waste Policy Action 4. The State of V
 4. The State of Victoria Department of Environment, Land, Water and Planning. Reecycling Victoria 5. Based on the National $\begin{aligned} & \text { Envisge Works (2021). }\end{aligned}$

[^1]: 1 Assuming export quantities do not change, this implies an increase in local reprocessing capacity (and end-markets for the products) of around 2.5 million tonnes per year (a 13 -fold increase or so) is required in the next ten years, for plastics to make a proportionat contribution to 80% recovery rate in the nationa t targets. It is hard to envisag how this target can be achieved for plastics without a system transformation, for which advanced recycling appears a strong potential contributor.

[^2]: 1. Austrian Governmen
 2. EPA Victoria. Waste Levy (2021).
 3. Based on the National Waste (2021). Based on the National Waste Report 2020 Data and Primary Research conducted by
 consultancy Evis
[^3]: $\frac{\text { Austraian Goverrmment Department of Agriculture, Water and the Environment. National }}{\text { Waste Report (} 2020 \text {. }}$ $\frac{\text { Austrian Goverment }}{\text { plasic waste } 2020) \text {. Department of Agriculture, Water and the Environment. Exports of }}$ Based on the National Waste Report 2020 Data and Primary Research conducted by
 consultancy Envisage Works (2021).

[^4]: ISCC. ISCC for the Circular Economy and Bioeconomy (2021).

[^5]: Braskem. Sussainable develoment macro goals - Goal 2020 (2020).
 Dow. Dow sets targets tor reduce GHG emissions, stop plastio waste, and drive toward a.
 3. E.astman. Policymakers can renew the recycling system through three actions (2021).
 4. Packaging Gateway. Agilyx, ExxonMobil parter for recycling post-use plastics (2020)
 6. Lyondellibasell. Lyondelliasell I Su

 LYondelizasell. LYondellizasell Sustainability Report Sets Ambitious Plastic Waste Targets
 Sabic. Toward a circular future - Executive summary (2019).
 8. Shell. Shell accelerates drive for net-zero emissions with a customerfirist strategy (2021)

